Contact Us - Tell A Friend - Free-Ed.Net Home   Bookmark and Share


Producing and Measuring Elecrical Quantities
Magnetism and Electromagnetism

Section 2-1 Magnetic Materials

Magnetism is generally defined as that property of a material which enables it to attract pieces of iron. A material possessing this property is known as a magnet. The word originated with the ancient Greeks, who found stones possessing this characteristic. Materials that are attracted by a magnet, such as iron, steel, nickel, and cobalt, have the ability to become magnetized. These are called magnetic materials.

Materials, such as paper, wood, glass, or tin, which are not attracted by magnets, are considered nonmagnetic. Nonmagnetic materials are not able to become magnetized.


Ferromagnetic Materials. The most important group of materials connected with electricity and electronics are the ferromagnetic materials. Ferromagnetic materials are those which are relatively easy to magnetize, such as iron, steel, cobalt, and the alloys Alnico and Permalloy. (An alloy is made from combining two or more elements, one of which must be a metal). These new alloys can be very strongly magnetized, and are capable of obtaining a magnetic strength great enough to lift 500 times their own weight.


Natural Magnets. Magnetic stones such as those found by the ancient Greeks are considered to be natural  magnets. These stones had the ability to attract small pieces of iron in a manner similar to the magnets which are common today. However, the magnetic properties attributed to the stones were products of nature and not the result of the efforts of man. The Greeks called these substances magnetite.

The Chinese are said to have been aware of some of the effects of magnetism as early as 2600 B.C. They observed that stones similar to magnetite, when freely suspended, had a tendency to assume a nearly north and south direction. Because of the directional quality of these stones, they were later referred to as lodestones or leading stones.

Natural magnets, which presently can be found in the United States, Norway, and Sweden, no longer have any practical use, for it is now possible to easily produce more powerful magnets.


Artificial Magnets. Magnets produced from magnetic materials are called ARTIFICIAL MAGNETS. They can be made in a variety of shapes and sizes and are used extensively in electrical apparatus. Artificial magnets are generally made from special iron or steel alloys which are usually magnetized electrically. The material to be magnetized is inserted into a coil of insulated wire and a heavy flow of electrons is passed through the wire. Magnets can also be produced by stroking a magnetic material with magnetite or with another artificial magnet. The forces causing magnetization are represented by magnetic lines of force, very similar in nature to electrostatic lines of force.

Artificial magnets are usually classified as permanent or temporary, depending on their ability to retain their magnetic properties after the magnetizing force has been removed. Magnets made from substances, such as hardened steel and certain alloys which retain a great deal of their magnetism, are called permanent magnets. These materials are relatively difficult to magnetize because of the opposition offered to the magnetic lines of force as the lines of force try to distribute themselves throughout the material. The opposition that a material offers to the magnetic lines of force is called reluctance. All permanent magnets are produced from materials having a high reluctance.

A material with a low reluctance, such as soft iron or annealed silicon steel, is relatively easy to magnetize but will retain only a small part of its magnetism once the magnetizing force is removed. Materials of this type that easily lose most of their magnetic strength are called temporary magnets. The amount of magnetism which remains in a temporary magnet is referred to as its residual magnetism. The ability of a material to retain an amount of residual magnetism is called the retentivity of the material.

Magnets are also described in terms of the permeability of their materials, or the ease with which magnetic lines of force distribute themselves throughout the material. A permanent magnet, which is produced from a material with a high reluctance, has a low permeability. A temporary magnet, produced from a material with a low reluctance, would have a high permeability.




David L. Heiserman, Editor

Copyright   SweetHaven Publishing Services
All Rights Reserved

Revised: June 06, 2015