Welding99.asp
fra0307 Fundamentals of Professional Welding

Drawings

Drawings or sketches are used to convey the ideas of an engineer to the skilled craftsman working in the shop. As a welder, you must be able to work from a drawing in order to fabricate metal parts exactly as the engineer has designed them.

READING DRAWINGS

To read a drawing, you must know how engineers use lines, dimensions, and notes to communicate their ideas on paper. In this section, we briefly discuss each of these drawing elements.

Lines

Figure 3-38 shows many of the different types of lines that are used in drawings. You can see that each line has a specific meaning you must understand to interpret a drawing correctly. Let’s discuss a few of the most important types. A visible line (sometimes called object line) is used to show the edges of an object that are visible to the viewer. For example, if you look at one of the walls of the room you are in, you can see the outline of the walls and (depending on the wall you are looking at) the outline of doors and windows. On a drawing, these visible outlines or edges can be shown using visible lines that are drawn as described in figure 3-38.


Figure 3-38.—Line characters and uses.

Now look at the wall again. Assuming that the wall is wood frame, you know that there are studs or framing members inside the wall that you cannot see. Also, the wall may contain other items, such as water pipes and electrical conduit, that you also cannot see. On a drawing, the edges of those concealed studs and other items can be shown using hidden lines (fig.3-38). These lines are commonly used in drawings. As you can imagine, the more hidden lines there are, the more difficult it becomes to decipher what is what; however, there is another way these studs and other items can be “seen.” Imagine that you “cut away” the wallboard that covers the wall and replace it with a sheet of clear plastic. That clear plastic can be thought of as a cutting or viewing plane (fig.3-38) through which the previously concealed studs, piping, and conduit are now visible. Now those items can be drawn using visible lines, rather than hidden lines. A view of this type is called a sectional view, and a drawing of the view is called a section drawing. Section drawings are commonly used to show the internal components of a complicated object.

Many times, you will see lines drawn on the visible surfaces of a section drawing. These lines, called section lines, are used to show different types of materials. .Some of the types of section lines you are likely to encounter as a welder are shown in figure 3-39.

Figure 3-39.—Section lines for various metals.

Another use of lines is to form symbols, such as welding symbols, that are discussed later in this lesson.

Dimensions

While engineers use lines to describe the shape or form of an object, they use dimensions to provide a complete size description. Dimensions used on drawings are of two types: size and location. As implied by their names, a size dimension shows the size of an object or parts of an object and a location dimension is used to describe the location of features. Examples of both size and location dimensions are shown in figure 3-40.

Figure 3-40.—Elements of an orthographic drawing.

While on the subject of dimensions, it should be noted that large objects are seldom drawn to their true size. Instead, the engineer or draftsman reduces the size of the object “to scale.” For example, when drawing a 40-foot tower, the drawing may be prepared using a scale of 1/2"= 1'-0". In this case, the height of the tower, on paper, is 20 inches. The scale used to prepare working drawings is always noted on the drawing. It maybe a fractional scale, such as discussed here, or a graphic scale, such as the one shown in figure 3-40. Often both numerical and graphic scales are usually shown on construction drawings.

When you are using a drawing, the dimensions of an object should never be measured (scaled) directly from the drawing. These measurements are frequently inaccurate, since a change in atmospheric conditions causes drawing paper to shrink or expand. To ensure accuracy, always use the size and location dimensions shown on the drawing. If a needed dimension is not shown on the drawing, you should check the graphic scale, since it will always shrink or expand at the same rate as the drawing paper.

Notes

Drawing notes are used for different purposes and are either general or specific in nature. One example of how notes are used are the two notes shown in figure 3-40 that give the inside diameters of the holes. As you can see, these notes are used for size dimensioning. They are specific notes in that, by using a leader line, each note is referred to a specific hole or set of holes.

A general note is used to provide additional information that does not apply to any one particular part or feature of the drawing. For example, the drawing shown in figure 3-40 could contain a general note saying: “All holes shall be reamed using a tolerance of ± 1/64 inch.”

Drawing Views

Look at the drawing shown in figure 3-41. This type of drawing is called a pictorial drawing. These drawings are frequently used to show how an object should appear after it is manufactured. Pictorial drawings are used as working drawings for a simple item, such as a metal washer. For a more complex object, as shown in figure 3-41, it becomes too difficult to provide a com-plete description in a pictorial drawing. In this case, it is common practice to prepare orthographic drawings to describe the object fully.

Figure 3-41.—Pictorial drawing of a steel part.

Assume you are holding the object shown in figure 3-41 in your hands. When you hold the object so you are looking directly at the top face of the object, the view you see is the top view. A drawing of that view is called an orthographic drawing.

Obviously, an orthographic drawing of only the top view of the object is insufficient to describe the entire object; therefore, additional orthographic drawings of one or more of the other faces of the object are necessary. The number of orthographic views needed to describe an object fully depends upon the complexity of the object. For example, a simple metal washer can be fully described using only one orthographic view; however, an extremely complex object may require as many as six views (top, front, left side, right side, back, and bottom). Most objects, such as the steel part shown in figure 3-41, can be sufficiently described using three views: top, front, and right side. For the object shown in figure 3-41, orthographic drawings of the top, front, and right-side views are shown in figure 3-42.

Figure 3-42.—Three-view orthographic drawing of the steel part shown in figure 3-41.

Notice the placement of the views shown in figure 3-42. This is a standard practice that you should be aware of when reading orthographic drawings. By this standard practice, the top view is always placed above the front view and the right-side view is placed to the right of the front view. When additional views are needed, the left side is always drawn to the left of the front view and the bottom is drawn below the front view. Placement of the back view is somewhat flexible; how-ever, it is usually drawn to the left of the left-side view. When reading and understanding the different orthographic views, you find it is sometimes helpful to prepare a pictorial sketch.

Think of drawings as a form of communication. They are intended to help you understand all the necessary information you need to fabricate and assemble an object regardless of the complexity. It is important that you learn to read drawings.

Handling and Care of Drawings

Special care should be exercised in the handling of drawings. When they are not being used, keep them on a rack or in another assigned place of storage. Drawings are valuable, and they may be difficult or impossible to replace if they are lost or damaged.

Now, we will discuss some special symbols. These are symbols a welder must be able to read and to understand how they are used to convey information.

WELDING SYMBOLS

Special symbols are used on a drawing to specify where welds are to be located, the type of joint to be used, as well as the size and amount of weld metal to be deposited in the joint. These symbols have been standardized by the American Welding Society (AWS). You will come into contact with these symbols anytime you do a welding job from a set of blueprints. You need to have a working knowledge of the basic weld symbols and the standard location of all the elements of a welding symbol.

A standard welding symbol (fig. 3-43) consists of a reference line, an arrow, and a tail. The reference line becomes the foundation of the welding symbol. It is used to apply weld symbols, dimensions, and other data to the weld. The arrow simply connects the reference line to the joint or area to be welded. The direction of the arrow has no bearing on the significance of the reference line. The tail of the welding symbol is used only when necessary to include a specification, process, or other reference information.

Figure 3-43.—Standard welding symbol.

Weld Symbols

The term weld symbol refers to the symbol for a specific type of weld. As discussed earlier, fillet, groove, surfacing, plug, and slot are all types of welds. Basic weld symbols are shown in figure 3-44. The weld symbol is only part of the information required in the welding symbol. The term welding symbol refers to the total symbol, which includes all information needed to specify the weld(s) required.

Figure 3-44.—Basic weld symbols.

Figure 3-45 shows how a weld symbol is applied to the reference line. Notice that the vertical leg of the weld symbol is shown drawn to the left of the slanted leg. Regardless of whether the symbol is for a fillet, bevel, J-groove, or flare-bevel weld, the vertical leg is always drawn to the left.

Figure 3-45.—Weld symbols applied to reference line.

Figure 3-46 shows the significance of the positions of the weld symbols position on the reference line. In view A the weld symbol is on the lower side of the reference line that is termed the arrow side. View B shows a weld symbol on the upper side of the reference line that is termed the other side. When weld symbols are placed on both sides of the reference line, welds must be made on both sides of the joint (view C).

Figure 3-46.—Specifying weld locations.

When only one edge of a joint is to be beveled, it is necessary to show which member is to be beveled. When such a joint is specified, the arrow of the welding symbol points with a definite break toward the member to be beveled. This is shown in figure 3-47.

Figure 3-47.—Arrowhead indicates beveled plate.

 

Figure 3-48 shows other elements that may be added to a welding symbol. The information applied to the reference line on a welding symbol is read from left to right regardless of the direction of the arrow.

Figure 3-48.—Elements of a welding symbol.

Dimensioning

In figure 3-48, notice there are designated locations for the size, length, pitch (center-to-center spacing), groove angle, and root opening of a weld. These locations are determined by the side of the reference line on which the weld symbol is placed. Figure 3-49 shows how dimensions are applied to symbols.

Figure 3-49.—Dimensions applied to weld symbols.

Figure 3-50 shows the meaning of various welding dimension symbols. Notice that the size of a weld is shown on the left side of the weld symbol (fig. 3-50, view A). The length and pitch of a fillet weld are indicated on the right side of the weld symbol. View B shows a tee joint with 2-inch intermittent fillet welds that are 5 inches apart, on center. The size of a groove weld is shown in view C. Both sides are 1/2 inch, but note that the 60-degree groove is on the other side of the joint and the 45-degree groove is on the arrow side.

Figure 3-50.—Dimensioning of welds.

 

Supplementary Symbols

In addition to basic weld symbols, a set of supplementary symbols may be added to a welding symbol. Some of the most common supplementary symbols are shown in figure 3-51.

Figure 3-51.—Supplementary symbols.

Contour symbols are used with weld symbols to show how the face of the weld is to be formed. In addition to contour symbols, finish symbols are used to indicate the method to use for forming the contour of the weld.

When a finish symbol is used, it shows the method of finish, not the degree of finish; for example, a C is used to indicate finish by chipping, an M means machining, and a G indicates grinding. Figure 3-52 shows how contour and finish symbols are applied to a welding symbol. This figure shows that the weld is to be ground flush. Also, notice that the symbols are placed on the same side of the reference line as the weld symbol.

Figure 3-52.—Finish and contour symbols.

Another supplementary symbol shown in figure 3-51 is the weld-all-around symbol. When this symbol is placed on a welding symbol, welds are to continue all around the joint.

Welds that cannot be made in the shop are identified as field welds. A field weld symbol is shown in figure 3-51. This symbol is a black flag that points toward the tail of the welding symbol.

Specifying Additional Information

It is sometimes necessary to specify a certain welding process, a type of electrode, or some type of reference necessary to complete a weld. In this case, a note can be placed in the tail of the reference line. (See fig. 3-53.) If additional information is not needed, then the tail is omitted.

Figure 3-53.—Specifying additional welding information.

Multiple-Weld Symbols

When you are fabricating a metal part, there are times when more than one type of weld is needed on the same joint; for example, a joint may require both a bevel groove weld and a fillet weld. Two methods of illustrating these weld symbols are shown in figure 3-54. Note that in each welding symbol, the bevel groove weld is to be completed first, followed by the fillet weld.

Figure 3-54.—Representing multiple welds.

Applying a Welding Symbol

Figure 3-55 shows an example of how a welding symbol may appear on a drawing. This figure shows a steel pipe column that is to be welded to a baseplate. The symbol tells the welder that the pipe is to be beveled at a 30-degree angle followed by a bevel groove weld all around the joint. This is followed by a 1/2-inch fillet weld that is also welded all around the joint. Finally, finish the fillet weld by grinding it to a flush contour. As the field weld symbol indicates, all welds are to be accomplished in the field.

Figure 3-55.—Example of welding symbol in use.

Safety

Mishaps frequently occur in welding operations. In many instances, they result in serious injury to the welder or other personnel working in the immediate area. In most cases, mishaps occur because of carelessness, lack of knowledge, and the misuse of available equipment. Precautions that apply to specific welding equipment are pointed out in the chapters that cover that equipment. In this section we are particularly interested in such topics as protective clothing, eye protection devices, and practices applicable to the personal safety of the operator and personnel working nearby.

Proper eye protection is of the utmost importance. This covers the welding operator and the other personnel, such as helpers, chippers, or inspectors, who are in the vicinity of the welding and cutting operations. Eye protection is necessary because of the hazards posed by stray flashes, reflected glare, flying sparks, and globules of molten metal. Devices used for eye protection include helmets and goggles.

NOTE

In addition to providing eye protection, helmets also provide a shield against flying metal and ultraviolet rays for the entire face and neck.

Figure 3-56 shows several types of eye protection devices in common use.

Figure 3-56.—Eye protection devices.

Flash goggles (view A) are worn under the welder’s helmet and by persons working around the area where welding operations are taking place. This spectacle type of goggles has side shields and may have either an adjustable or nonadjustable nose bridge.

Eyecup or cover type of goggles (view B) are for use in fuel-gas welding or cutting operations. They are contoured to fit the configuration of the face. These goggles must be fitted with a shade of filter lens that is suitable for the type of work being done.

NOTE

The eyecup or cover type of goggles are NOT to be used as a substitute for an arc-welding helmet.

For electric arc-welding and arc-cutting operations, a helmet having a suitable filter lens is necessary. The helmet shown in view C has an opening, called a window, for a flip-up filter lens 2 inches by 4 1/4 inches in size.  The helmet shown in view D has a 4 1/2-inch by 5 1/4-inch window. The larger window affords the welder a wider view and is especially useful when the welder is working in a confined place where head and body movement is restricted. When welding in locations where other welders are working, the welder should wear flash goggles beneath his helmet to provide protection from the flashes caused by the other welders’ arcs. The flash goggles will also serve as eye protection when chipping the slag from a previous weld deposit.

Helmets and welding goggles used for eye protection are made from a nonflammable insulating material. They are fitted with a removable protective colored filter and a clear cover lens.

NOTE

The purpose of the clear cover lens is to protect the filter lens against pitting caused by sparks and hot metal spatter. The clear lens must be placed on the outside of the filter lens. The clear lens should be replaced when it impairs vision.

Filter lenses are furnished in a variety of shades, which are designated by number. The lower the number, the lighter the shade; the higher the number, the darker the shade. Table 3-1 shows you the recommended filter lens shade for various welding operations. The filter lens shade number selected depends on the type of work and somewhat on the preference of the user. Remember, a filter lens serves two purposes. The first is to diminish the intensity of the visible light to a point where there is no glare and the welding area can be clearly seen. The second is to eliminate the harmful infrared and ultraviolet radiations coming from the arc or flame; consequently, the filter lens shade number you select must not vary more than two shades from the numbers recommended in table 3-1.

Table 3-1.—Recommended Filter Lenses for Various Welding Operations

Rule of thumb: When selecting the proper shade of filter lens for electric-arc welding helmets, place the lens in the helmet and look through the lens as if you were welding. Look at an exposed bare light bulb and see if you can distinguish its outline. If you can, then use the next darker shade lens. Repeat the test again. When you no longer see the outline of the bulb, then the lens is of the proper shade. Remember that this test should be performed in the same lighting conditions as the welding operation is to be performed. Welding in a shop may require a shade lighter lens than if the same job were being performed in bright daylight. For field operations, this test may be performed by looking at a bright reflective object.

WARNING

Never look at the welding arc without proper eye protection. Looking at the arc with the naked eye could lead to permanent eye damage. If you receive flash burns, they should be treated by medical personnel.

A variety of special welder’s clothing is used to protect parts of the body. The clothing selected varies with the size, location, and nature of the work to be performed. During any welding or cutting operation, you should always wear flameproof gauntlets. (See fig. 3-57.) For gas welding and cutting, five-finger gloves like those shown in view A should be used. For electric-arc welding, use the two-finger gloves (or mitts) shown in view B.

Figure 3-57.—Welding gloves and mitts.

Both types of gloves protect the hands from heat and metal spatter. The two-finger gloves have an advantage over the five-finger gloves in that they reduce the danger of weld spatter and sparks lodging between the fingers. They also reduce finger chafing which sometimes occurs when five-finger gloves are worn for electric-arc welding.

Many light-gas welding and brazing jobs require no special protective clothing other than gloves and goggles. Even here, it is essential that you wear your work clothes properly. Sparks are very likely to lodge in rolled-up sleeves, pockets of clothing, or cuffs of trousers or overalls. Sleeves should be rolled down and the cuffs buttoned. The shirt collar, also, should be fully buttoned. Trousers should not be cuffed on the outside, and pockets not protected by button-down flaps should be eliminated from the front of overalls and aprons. All other clothing must be free of oil and grease. Wear high top-safety shoes; low-cut shoes are a hazard because sparks and molten metal could lodge in them, especially when you are sitting down.

Medium- and heavy-gas welding, all-electric welding, and welding in the vertical or overhead welding position require special flameproof clothing made of leather or other suitable material. This clothing is designed to protect you against radiated heat, splashes of hot metal, or sparks. This clothing consists of aprons, sleeves, combination sleeves and bib, jackets, and overalls. They afford a choice of protection depending upon the specific nature of the particular welding or cutting job. Sleeves provide satisfactory protection for welding operations at floor or bench level.

The cape and sleeves are particularly suited for overhead welding, because it protects the back of the neck, top of the shoulders, and the upper part of the back and chest. Use of the bib, in combination with the cape and sleeves, gives added protection to the chest and abdomen. The jacket should be worn when there is a need for complete all-around protection to the upper part of the body. This is especially true when several welders are working in close proximity to one another. Aprons and overalls provide protection to the legs and are suited for welding operations on the floor. Figure 3-58 shows some of the protective clothing  available to welders.

Figure 3-58.—Welder’s protective clothing.

To prevent head burns during overhead welding operations, you should wear leather or flameproof caps under the helmet. Earplugs also should be worn to keep sparks or splatter from entering and burning the ears. Where the welder is exposed to falling or sharp objects, combination welding helmet/hard hats should be used. For very heavy work, fire-resistant leggings or high boots should be worn. Shoes or boots having exposed nailheads or rivets should NOT be worn. Oilskins or plastic clothing must NOT be worn in any welding operation.

NOTE

If leather protective clothing is not available, then woolen clothing is preferable to cotton.

Woolen clothing is not as flammable as cotton and helps protect the operator from the changes in temperature caused by welding. Cotton clothing, if used, should be chemically treated to reduce its flammability.

The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose, nor are any such representation implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special consequential or exemplary damages resulting, in whole or in part, from the user’s application of, or reliance upon, this material.

Copyright © David L Heiserman
All Rights Reserved